Showing posts with label Gastrointestinal (GI) tract. Show all posts
Showing posts with label Gastrointestinal (GI) tract. Show all posts

Wednesday, 27 June 2012

General Zod? No, General Zonulin

I hold my hands up and admit that gut hyperpermeability - leaky gut - is a bit of an obsession of mine. I know to some the mere mention of leaky gut conjures up images of 'alternative medicine' and all things tree-hugging. Just for the record I've never knowingly hugged any tree and am a meat eating, petrol car driving, house dwelling regular guy who has yet to dabble in anything 'alternative' assuming that the odd vitamin D tablet and probiotic counts as regular. Still I remain very interested in how abnormal gastrointestinal (GI) permeability might be tied into quite a few conditions.

One aspect of GI permeability in particular has surfaced quite recently on my research radar, an interesting compound called zonulin.

A description first. Zonulin enjoys quite a special place in the science of the tight junctions. Tight junctions (TJs) among other roles, serve quite an important barrier function in lots of parts of the body; so making sure that things stay in and other things stay out. Zonulin seems to be part and parcel of the chemistry of tight junctions and in particular sharing quite an important relationship with the enhanced permeability of TJs.

With the gut in mind, zonulin has found quite a bit of interest. A familiar name to this blog, Dr Alessio Fasano, seems to have been present right at the beginning of interest in zonulin, with a particular focus on gut permeability tied into the presence of coeliac (celiac) disease as per this article* and write-up.

Ever since then, zonulin has just been making wave** (full-text) after wave*** (full-text) after wave**** as per its 'disassembly' activity when it comes to TJs. The initial link with coeliac disease is an interesting one given that later work suggested that gluten, or rather the gliadin fraction of gluten, has the propensity to induce zonulin release***** (at least under certain laboratory conditions).

But coeliac disease was just the starting point for zonulin, as more recent research has suggested a potential role for this protein in relation to gut permeability in type-1 diabetes (here and here), obesity (here) and potentially quite a few other conditions (here) with a specific focus on autoimmune conditions. General Zod? No, General Zonulin.

Accepting that there still remains some work to do on zonulin with regards to the methods and mode of action of zonulin on gut permeability******* this is a very interesting protein.

With my 'wondering' hat on, I have a few questions:

  • Assuming the link between type-1 diabetes, gut permeability and zonulin holds up, does this mean that a gluten-free diet might be 'advantageous' for at least some people with type-1 diabetes? I'm thinking about this recent case study******* as a template. I would also add that no medical advice is given or intended by  this question.
  • Gut hyperpermeability, leaky gut, has been documented in other conditions including one close to my research heart, autism spectrum conditions (see here). Again noting the suggestions by de Magistris and colleagues (here) on how a gluten- & casein-free diet seemed to affect measures of gut permeability in their cohort, is it perhaps time to look at zonulin with regards to conditions like autism? How about schizophrenia also? 
  • Finally(!), the amino acid glutamine and its proposed tie up with gut permeability. Might glutamine affect zonulin production or even the other way around? Or am I just confusing things and heading out a step too far? 

----------

* Fasano A. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet. 2000; 355: 1518-1519.

** Wang W. et al. Human zonulin, a potential modulator of intestinal tight junctions. Journal of Cell Science. 2000; 113: 4435-4440.


*** Fasano A. Intestinal zonulin: open sesame! Gut. 2001; 49: 159-162.


**** El Asmar R. et al. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology. 2002; 123: 1607-1615.


***** Clemente MG. et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut. 2003; 52: 218-223.


****** Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Annals of the New York Academy of Sciences. 2012; 1258: 25-33.


******* Sildorf SM. et al. Remission without insulin therapy on gluten-free diet in a 6-year old boy with type 1 diabetes mellitus. BMJ Case Reports. June 2012

sciseekclaimtoken-4fec17dcb6f3a

Monday, 19 March 2012

Gut microflora, coeliac disease and introducing gluten

A new paper by Sellitto and colleagues* (full-text) has been causing quite a bit of interest in certain circles. The paper as the name suggests is [partially] a 'proof of concept' study which includes several topics of interest for this blog with its focus on gut microflora (and dysbiosis), coeliac (celiac) disease (CD) and some interesting metabolomics science. The added value comes with the name Alessio Fasano as part of the authorship list.

There is quite a bit of details to this paper but in essence the aims were: (i) to characterise the changes from birth to 24 months in terms of gut bacteria to genetically at-risk of coeliac disease children as a function of early or delayed introduction of gluten to the diet, and (ii) to undertake a range of analytical methods to map such bacterial populations with the hope of further informing on any relationship between gut bacteria and coeliac disease.

The paper is full-text but a quick summary of proceedings and findings:

  • Forty-seven infants who had one parent with biopsy-proven CD were initially recruited before weaning had commenced. All were breastfed from birth to at least 6 months of age. From 6-12 months of age, 30 infants positive for either the HLA DQ2 and/or HLA DQ8 genotypes were randomly allocated to either a gluten-free - delayed gluten exposure - group (n=13) or a gluten load - early exposure - group (n=17).
  • A smaller number of children from each group (n=8 each) were selected randomly for the analytical side of the study (which is what this paper in essence reports) where stool samples were collected at various points over the study period ranging from 7 days in to 24 months.
  • The results: none of the 8 infants from the delayed gluten exposure group developed CD over the course of the study. One of the 8 infants in the early gluten introduction group did go on to develop CD at 2 years of age as measured by various serological panels and went on to a gluten-free diet with a remission of serology at follow-up.
  • When levels of anti-gliadin antibodies (AGA) (IgG) were examined and corrected for gluten exposure time, the early gluten introduction group showed a higher number of IgG-AGA positive results than the delayed exposure group. The authors discuss how AGA is not necessarily a particularly good measure of CD but could indicate greater levels of intestinal hyperpermeability (leaky gut) as a result of exposure to the gliadin fraction of the gluten protein in the same way that IgG levels have been interpreted in other studies (see Sutterella and autism post). 
  • Pyrosequencing of the various species and families of bacteria present across the groups at different time frames suggested some interesting goings-on. To quote: "the GI tract microbiota in DQ2+/DQ8+ infants appears to be lacking significant numbers of member of the phylum Bacteroidetes". That and a higher abundance of Firmicutes, implies that maturationally, the gut microflora of children at elevated risk of CD is different from lower risk groups as determined by comparison with an external dataset** (full-text).
  • The application of 1H-Nuclear Magnetic Resonance Spectroscopy (NMR) to proceedings added that metabolomic touch as "..SCFA succinate, acetate, propionate and butyrate are found in the feces" following the introduction of solid foods. Having said that little distinguishing data was found to categorise the two groups in any significant, universal way.

It's taken me a while to get my head around all the findings from this recent paper because there was a lot of data produced bearing in mind the small participant group and preliminary status of the paper. One of the first things that did strike me is the overlap in these findings and some fairly recent data published looking at carbohydrate metabolism and autism included in this post. Decreasing Bacteriodetes and increasing Firmicutes was the preliminary finding from Williams and colleagues*** bearing in mind the difference in samples being analysed and the lack of data on HLA DQ2 / HLA DQ8 genotype provided in the group with autism being studied. I'm not going to say too much more of this 'similarity' aside from the fact that screening for coeliac disease and/or excessive intestinal permeability perhaps ought to be much more commonly undertaken in cases of autism spectrum conditions just to rule them out.

Quite a few mentions of the word 'dysbiosis' are also recorded in the current paper which reaffirms the possibility of a connection between the various populations of bacteria that reside within us and our potential risk of disease. I like the idea that this study looked at both the metabolomic and genomic side of things even if it was just based on the HLA DQ geneotypes.

So from the starting point of a genetic susceptibility to gluten, we have preliminary data on functional changes to the microbiome in susceptible people and some interesting tools for looking at how this might be expressed functionally. I look forward to more studies of this type with greater participant numbers, and in particular how such findings might extend into other autoimmune conditions and even beyond just somatic presentation.

* Sellitto M. et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE. March 2012
DOI: 10.1371/journal.pone.0033387

** Palmer C. et al. Development of the human infant intestinal microbiota. PLoS Biology. 2007; 5:e177
DOI: 10.1371/journal.pbio.0050177

*** Williams B. et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE. September 2011.
DOI: 10.1371/journal.pone.0024585

Monday, 5 March 2012

Strong intestinal barrier and the big C?

I enjoy reading the odd newspaper now and again just to find out what's going on in the world. Having said that I do take some of the headlines with a pinch of salt as evidenced by a recent UK headline about autism which has been roundly brought up on its inaccuracy.

With such things in mind, I approach this post with very much more caution than usual given the subject matter - cancer - and the propensity for such headlines to become 'over inflated'. The headline in question came from this news piece on the recent publication by Lin and colleagues* (open-access) on a possible connection between the compound guanylyl cyclase C (GC-C) and the integrity of the intestinal barrier which might have onward repercussions outside of just malabsorption issues.

Let's start from the beginning on this one. Guanylyl cyclase C (GC-C) is, as its -ase name suggests, an enzyme found in gut and brain. It plays a role in regulating intestinal fluid and balancing electolytes. For those brave souls who quite like a bit of heavy biochemsitry, quite a thorough description of the whole guanyly cyclase family can be found here. Going back to GC-C, more recently, evidence has been accumulating to suggest that GC-C might also have some connection to intestinal barrier function** based on knockout mice studies.

The recent study by Lin went one stage further suggesting that in a mouse model GC-C did indeed link to barrier integrity through its effect on various junction proteins. It also however affected oxidative DNA damage when silenced subsequently ".. associated with increased spontaneous and carcinogen-induced systemic tumorigenesis".

Some details:

  • Various mouse models were used; the important ones being mice deficient in GC-C (called GUCA2A in this paper) which will be called GC-C-/- (the -/- denoting zygosity for the receptor, as in homozygous for deficiency) and mice GC-C+/+ (denoting homozygous for no deficiency).
  • A few differences came to light between the -/- and +/+ mice: the -/- mice produced less tight junction proteins including occluden, claudin-2, claudin-4 and JAM-A. In English, these are some of the main constituents that keep the gut barrier in good integral health. This was confirmed when looking at intestinal permeability which was increased (more leaky) in the -/- mice.
  • When trying to chemically induce intestinal barrier issues via DSS, the severity of the colitis produced was increased in the -/- mice compared with the +/+ mice; something also seen in the mortality-survival rates between the two models.
  • A quote from the paper: "Impaired basal epithelial barrier integrity producing systemic genotoxicity was associated with spontaneous extra-intestinal tumorigenesis, including tumors in mesenteric lymph nodes, livers, and lungs, in 50% of Gucy2c−/− mice, but in only 10% of Gucy2c+/+ mice". Translation: more permeability in the gut of the -/- mice led to more tumours in other organs compared to +/+ mice.

There is a lot more to this paper which I unable to cover in this short post. The one obvious point to make is that this was a mouse model of GC-C deficiency and hence needs a little more investigation into whether such processes transpose so readily on to humans. GC-C already has a possible link to metastatic cancer cells as per articles like this one so one would already expect quite a bit of interest in this compound in cancer research circles.

Combined with my previous post on diabetes and leaky gut, it is heartening to see some novel research is being done on how gut barrier permeability might not necessarily just manifest in intestinal symptoms. I leave you with another quote from one of the authors: ".. if you want to prevent inflammation or cancer in humans, then we need to start thinking about feeding people hormones that activate GC-C to tighten up the [intestinal] barrier.” I am certainly not advocating this or any other 'advice' at this time but perhaps this is fodder for further research and a later post methinks.

* Lin JE. et al. GUCY2C opposes systemic genotoxic tumorigenesis by regulating AKT-dependent intestinal barrier integrity. PLoS ONE. February 2012.
DOI: 10.1371/journal.pone.0031686

** Han X. et al. Loss of guanylyl cyclase C (GCC) signaling leads to dysfunctional intestinal barrier. PLoS ONE. 6: e16139
DOI: 10.1371/journal.pone.0016139

Friday, 24 February 2012

Does diabetes start in the intestines?

The findings of an interesting paper by Wei and colleagues* (full-text) pose a question: are the origins of diabetes in the intestines?

For those that don't know too much about diabetes, here is a link that should help. The concise version (if there is such a thing) is that diabetes normally manifests as either type-1 diabetes or type-2 diabetes with insulin being the key compound in controlling blood sugar, and corresponding issues either with its production or when resistance is built up to it.

The crux of the paper by Wei et al is that an insulin-responsive super enzyme called fatty acid synthase (FAS) involved in lipogenesis is also involved in gut barrier regulation through its action on Mucin 2 (Muc2), a gel-forming component of mucus. The authors' suggestion is that becoming resistant to insulin is associated with issues with FAS and correspondingly problems with mucus in the gut, inflammation and diabetes. No pressure then.

The paper summarised (deep breath):

  • Several groups of mice were included for study: (a) mice with chemically-induced (tamoxifen induction of Cre recombinase) decreases of FAS protein and mRNA, (b) mice bred with inactivated FAS in the intestine and (c) control germ-free mice. For group (b) mice, diabetes was induced by administration of streptozotocin, a toxin to the beta cells which produce insulin in the pancreas.
  • Assays looking at gut bacteria, intestinal permeability, cytokine release and protein S-palmitoylation were used to investigate various parameters.
  • The findings: a chemically-induced deficiency of FAS in mice started a cascade of events linked to inflammation. One of the primary cytokine markers of this inflammation was elevated levels of TNF-α although animals were also noted to show weight loss and other gastrointestinal symptoms. A quarter of these mice actually died within 14 days.
  • The authors deduced that although some changes were noted to the intestinal bacterial makeup of FAS reduced mice, these changes were not enough to cause the inflammation observed but rather were as a result of the inflammation. They demonstrated this via a previously discussed method on this blog, bacterial transplantation; in this case to the germ-free mice (group c) who did not show the accompanying inflammation as a result of their donor bacteria. That is not however to say that gut microbiota did not have some effect, as per the reduction in inflammation noted in the FAS deficient mice following administration of the antibiotics ciprofloxacin and metronidazole.
  • The link between FAS deficiency and Muc2 was evidenced by the lower levels of Muc2 shown in FAS deficient mice and reduced inner mucus layer thickness in the colon of affected mice. 
  • Looking at the inactivated FAS (group b) diabetic mice, a similar pattern of issues with Muc2 and reductions in the mucus layer was seen alongside penetration of bacteria indicating intestinal hyperpermeability (leaky gut). Interestingly, insulin supplementation seemed to positively affect some of the permeability issues.

This is quite a complicated paper and so please do not take my summary as gospel. It is intriguing that inflammation is at the heart of their theory and in particular, inflammation as a result of not having enough FAS present in the gut with the knock-on effects on gut permeability. Indeed not for the first time has it been suggested that diabetes and leaky gut are connected as per articles like this one. Makes you wonder also about any other possible dietary inter-related connections?

* Wei X. et al. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin. Cell Host & Microbe. February 2012.
DOI:  10.1016/j.chom.2011.12.00

Monday, 20 February 2012

On gut parasites and chronic fatigue

An interesting exchange on Twitter prompted this short post regarding a paper by Naess and colleagues* (full-text) on Giardia lamblia gastroenteritis and chronic fatigue syndrome (CFS). The tweets concerned another parasitic nasty called Toxomplasma gondii which has featured quite a bit on a sister blog with regards to its link to various behaviourally-defined conditions. I thought that T.gondii was a spine-tingling protozoa until someone posted about these other chaps and their brain-eating, behaviour-changing and belly exploding antics (pass the sauce, please).

Giardia lamblia is quite a special  protozoa in terms of its survival, persistence and ability to link into quite a few other health complaints particularly of the gastrointestinal variety and specifically links to lactose intolerance. The current observations by Naess et al are interesting in that based on an examination of over 1200 patients with laboratory-confirmed giardiasis following a large community outbreak in Bergen, Norway, approximately 5% of cases (58/1262) were diagnosed with CFS as classified by the CDC criteria (see here for a related post on the trials and tribulations of diagnosing CFS/ME).

Even assuming a CFS prevalence of 1% previously noted in children (not adults) in the UK, the 5% figure seems high bearing in mind correlation is not necessarily causation. What can perhaps be ascertained from this latest study is that it might be a good idea to screen for giardiasis where active functional bowel issues are present alongside fatigue-related conditions and further research on any mechanism of parasitic infection linked to long-term fatigue might be advisable.

* Naess H. et al. Chronic fatigue syndrome after Giardia enteritis: clinical characteristics, disability and long-term sickness absence. BMC Gastroenterology. February 2012.
DOI: 10.1186/1471-230X-12-13

Saturday, 28 January 2012

Greens, glutathione and the mucosal barrier

'Eat your greens' is a phrase most of us will have heard on several occasions when growing up. I have to admit to being a bit of a 'goody two-shoes' in this respect, having had a lasting affection for things like Brussels sprouts and broccoli. Indeed, sprouts still tend to be on my menu several times a week (boiled with a drop of Greek olive oil).

I say all this because an interesting article published a few years back has caught my eye recently. The paper by Hoensch and colleagues* (open-access) looked at the various factors potentially affecting the functioning of the gastrointestinal glutathione system with some interesting observations.

I will admit that glutathione (GSH) is something which I am becoming very interested in at the moment. Over on my autism research blog, I recently discussed the pretty remarkable findings emerging in some cases of autism with regards to plasma GSH which might (might!) eventually have some diagnostic usefulness in combination with other factors. The Hoensch paper talks about GSH levels in the upper gastrointestinal mucosa and how factors such as diet, some medications and even gender seemed to affect levels of GSH and accompanying enzyme activity (glutathione S-transferase, GST).

The particulars:

  • Biopsy pinches taken from two sites (antral and duodenal mucosa) for 202 adults (104 males: 98 female) undergoing endoscopy were analysed for GSH and GST activities. Various background information was also taken from participants including details of family history, medication and current dietary habits via a food frequency questionnaire.
  • The findings: different biopsy sites reflected different levels of GSH and enzyme activity. Female participants showed higher levels of GSH and GST activity in their antral mucosa samples than males. High intake of vegetables (more than 3 days a week) seemed to enhance aspects of GST activity.
  • A subsequent author reply to a suggestion that Helicobacter pylori infection might also have had an effect suggested that indeed, one aspect of GST activity was negatively affected by H.pylori infection.

Bearing in mind that GSH and its related sub-systems represent an important part of our defences against those dastardly free radicals among other things, making sure that the system is in tip-top condition is probably quite important. I don't want to make sweeping gender generalisations but the fact that females seemed to be in a slightly more advantageous position compared with male participants leads me back to some interesting work on the fragile male. Having said that, let's not be too defeatist here; greater vegetable consumption seemed to have an enhancing effect as per other results so one could argue, guys in particular, eat more greens - especially more brassica vegetables to support your mucosal antioxidant defence system.

* Hoensch H. et al. Influence of clinical factors, diet, and drugs on the human upper gastrointestinal glutathione system. Gut. 2002; 50: 235-240.

Friday, 21 October 2011

Cytokines and gut motility

A relatively short post this one.

I think most people would understand why gastrointestinal motility is important to our health and wellbeing. Too fast or too slow a transit time is likely to lead to some pretty uncomfortable symptoms and indeed could signal the presence of one of a number of complications.

A recently published review paper on motility in gastrointestinal disorders by Akiho and colleagues* (full-text here) caught my eye. I was interested in this paper because it reviews the association between gastrointestinal motility and the expression of cytokines as a function of which way the immune system might be skewed.

I should perhaps back-up slightly here and provide some commentary on the way the immune system can be poised (according to our current knowledge) and in particular the concepts of Th1 and Th2. A good overview of the T helper cells is here. In brief, it's all to do with different kinds of immunity and how our immune system attempts to strike a balance between cell-mediated immunity (Th1) and humoral immunity (Th2) depending on what particular pathogen the immune system is up against.

The Akiho review paper lists a number of the most common GI disorders currently in the medical dictionary and details what particular types of response and cytokines are tied into the disease state. So for coeliac (celiac) disease and Crohn's disease there is a predominantly Th1 skewed cytokine profile either associated with disease onset or perpetuation. In ulcerative colitis, it is more of a Th2-like response in terms of cytokines associated with the condition. The authors do make mention also about Th17-mediated inflammation (possibly linked to autoimmunity) but this is still very much an emerging area of investigation.

The authors then proceed to review the evidence that Th1-related cytokines seem to show more of an affinity with hypocontractality of inflamed intestinal smooth muscle (slowing down) and Th-2 show a more hypercontractility (speeding up).  This is perhaps too simplistic a view to take, one linked to one but not the other, given the number of cytokines tied into various GI states and the complexity of the whole thing. But their analysis of the current evidence base is an interesting one.

What work like this serves to show is that the our immune system is a fantastic piece of engineering constantly trying to strike a balance between fighting off pathogens and infections and invaders, whilst at the same time keeping the host (us) in working order, trying not to destroy us also. The presentation of GI conditions, many GI conditions, seem to reflect the inner workings (and malfunctions) of the immune system and when establishing how the immune system manifests itself in individual conditions, offers some tantilising insights into potential therapies.

* Akiho H. et al. Cytokine-induced alterations of gastrointestinal motility in gastrointestinal disorders. World J Gastrointest Pathophysiol. October 2011

Thursday, 1 September 2011

The gut virome

Our gastrointestinal tract is alive. Teaming with all sort of weird and wonderful compounds and organisms, it truly is a world within a world. Metabolites from food, various neurotransmitters, digestive juices and enzymes; all swimming merrily around doing things which we have only started to understand, not just in the gut but also connected to lots of other systems in the body.

Our gastrointestinal bacteria constitutes a large portion of this 'biochemical soup' and has started to receive quite a lot more research inquiry recently as a result. What is perhaps only now starting to be realised is that our gut also house a lot more than just bacteria, it is also home to quite a few viruses also.

Think viruses and people automatically assume infection and bad things like bird flu. Even today, alerts are cropping up suggesting that bird flu might be making a comeback and this time with even more lethal strains. Viruses do not have a great reputation despite the fact that perhaps not all are the devil incarnate as exemplified by this recent advance in a potential anti-cancer virus.

A recent paper by Minot and colleagues* published in Genome Research suggests that our gut might house quite a few viruses and that what we eat has the potential to affect both the bacterial and viral signature in our gut.

The paper which has been summarised here suggests the gut virome, similar to the gut bacterial microbiome is both unique to a person and dynamic; in this case, changing the fibre and fat content of a persons diet resulted in changes to the gut virome.

I await more investigation on this topic. Investigation into how our gut virome interacts with our health and disease and how potentially other environmental factors might affect our viral world within a world.

* Minot S. The human gut virome: inter-individual variation and dynamic response to diet. Genome Research. August 2011.

Wednesday, 31 August 2011

Food and irritable bowel syndrome

Irritable bowel syndrome (IBS) has always seemed like a bit of an odd term to me. Odd because whilst it is used to describe various symptoms related to the bowel, 'irritable' to me implies angry and annoyed. Assuming that a similar meaning is denoted for IBS, various notions perhaps acquire new meaning. If for example, we assume that the gut is the second brain, and our first brain (the one in our head!) is the part of us that becomes irritable, angry or annoyed in response to whatever, then one can see some sense in its use when applied to the gut.

I digress. There is quite a lot of speculation as to what causes IBS and what are the most effective ways of reducing or managing symptoms. Outside of psychological factors such as stress, diet and food have been consistently related to some cases of IBS and the suggestion that sensitivity or intolerance might be tied into symptoms. I wrote a post about this not so long ago following the publication of quite an important piece of research where non-celiac gluten intolerance seemed to be linked to some cases of IBS. Removing gluten, or rather reintroducing gluten after having previously been excluded from the diet, seemed to be linked to the appearance of various IBS symptoms over placebo.

A recent article adds to the dietary connection. The paper by Carroccio and colleagues* suggested that a quarter of their participant group were found to have a food hypersensitivity to cow's milk protein and/or gluten wheat protein. Furthermore levels of tryptase, an enzyme normally released as part of an allergic-immune response, and fecal eosinophil cationic protein (ECP), related to inflammation, were higher in those participants with IBS and food hypersensitivity. This indicating some possibility of identifying those cases of IBS with a potential dietary effect involved.

Whilst complicated, dare I say spectral, conditions such as IBS are never going to be caused by one factor and one factor alone, there is some reliable evidence emerging implicating a dietary effect as being involved. Much like lifestyle and stress-reduction treatments and pharmacotherapy, such a dietary effect if linked, provides another possible intervention route to potentially alleviating symptoms, at least for a proportion of those affected.

* Carroccio A. et al. Fecal assays detect hypersensitivity to cows milk protein and gluten in adults with irritable bowel syndrome. Clinical Gastroenterology & Hepatology. August 2011.

Tuesday, 16 August 2011

Can a gluten-free diet affect gut bacteria?

For those who have stumbled across this blog on the wide open plains of the Internet, I have a bit of interest in all things gluten-free. It is a professional interest and has been for quite a few years, as various colleagues and I have been looking at whether a gluten-free (GF) diet might show some effect on behaviour, and in particular behaviours commonly associated with autism spectrum conditions. We don't have a definitive answer by the way, but do suspect more than a passing association between diet and some cases of autism.

For those of you who perhaps already know of my interest and are thinking 'change the record mate', this post (this blog) is not going to rehash material from its sister blog, Questioning Answers, at least not on this occasion, but rather take a slightly different perspective. This post is tied into this study by Nistal and colleagues* on what happens to gut bacteria populations in coeliac disease when a GF diet is/is not in place. One of their findings was that gut bacterial populations differed (in adults) according to whether or not a GF diet was being applied.

This is not the first time that coeliac disease has been looked at in terms of the GF diet and gut bacterial populations. Indeed the effects of the GF diet seem also to be present outside of coeliac disease, depending on where you look for your bacterial colonies in the gut.

To me this is an interesting finding. Interesting because it suggests that our diet, much like various medications, can affect the trillions or so of gut bacteria that colonise us. Indeed comparative studies looking at diets in different parts of the world outside of coeliac disease have shown pretty much the same thing: what you eat affects your gut bacterial populations. The knock-on effects of this... to be discussed in subsequent posts.

* Nistal E et al. Differences of small intestinal bacterial populations in adults and children with/without celiac disease: effect of age, gluten diet and disease. Inflammatory Bowel Diseases. August 2011.

Introductions

As per the headlines, this is a blog about your gut, your gastrointestinal (GI) tract, your intestines. This blog is a place to discuss various strands of research about the gut related to all sorts of different aspects and conditions ranging from how the gut works to gut bacteria to gut barrier function to conditions associated with the gut.

Where and what is your gut (as if I have to ask)? Well just in case you don't know, here is a link to a bit of a description.

Please keep all comments on blog posts cordial and polite and no swearing or vulgarity please. I hereby declare that no medical advice will be given or intended from this blog. If you think you have a problem with your gut (or any other body part), go to your doctor, don't rely on blogs!